Nonlinear Prediction of Chaotic Time Series UsingSupport Vector
نویسندگان
چکیده
A novel method for regression has been recently proposed by V. Vapnik et al. 8, 9]. The technique, called Support Vector Machine (SVM), is very well founded from the mathematical point of view and seems to provide a new insight in function approximation. We implemented the SVM and tested it on the same data base of chaotic time series that was used in 1] to compare the performances of diierent approximation techniques, including polynomial and rational approximation, local polynomial techniques, Radial Basis Functions, and Neu-ral Networks. The SVM performs better than the approaches presented in 1]. We also study, for a particular time series, the variability in performance with respect to the few free parameters of SVM.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملRiver Discharge Time Series Prediction by Chaos Theory
The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...
متن کاملLocal prediction of non-linear time series using support vector regression
Prediction on complex time series has received much attention during the last decade. This paper reviews least square and radial basis function based predictors and proposes a support vector regression (SVR) based local predictor to improve phase space prediction of chaotic time series by combining the strength of SVR and the reconstruction properties of chaotic dynamics. The proposed method is...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997